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Why are 96Zr and 96Ru so different? 
already because 1g_9/2 and 2d_5/2 
wave functions are rather different! 
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Low-lying energy levels in a single-
particle shell model with an oscillator
potential (with a small negative l2
term) without spin–orbit (left) and
with spin–orbit (right) interaction. The
number to the right of a level
indicates its degeneracy, (2j+1). The
boxed integers indicate the magic
numbers.

potential to a more realistic one. The second-to-highest j states, on the contrary, have their energy
shifted up by the first effect and down by the second effect, leading to a small overall shift. The
shifts in the energy of the highest j states can thus bring the energy of states of one level to be
closer to the energy of states of a lower level. The "shells" of the shell model are then no longer
identical to the levels denoted by n, and the magic numbers are changed.

We may then suppose that the highest j states for n = 3 have an
intermediate energy between the average energies of n = 2 and
n = 3, and suppose that the highest j states for larger n (at least
up to n = 7) have an energy closer to the average energy of
n − 1. Then we get the following shells (see the figure)

1st shell: 2 states (n = 0, j = 1⁄2).
2nd shell: 6 states (n = 1, j = 1⁄2 or 3⁄2).
3rd shell: 12 states (n = 2, j = 1⁄2, 3⁄2 or 5⁄2).
4th shell: 8 states (n = 3, j = 7⁄2).
5th shell: 22 states (n = 3, j = 1⁄2, 3⁄2 or 5⁄2; n = 4, j = 9⁄2).
6th shell: 32 states (n = 4, j = 1⁄2, 3⁄2, 5⁄2 or 7⁄2; n = 5, j =
11⁄2).
7th shell: 44 states (n = 5, j = 1⁄2, 3⁄2, 5⁄2, 7⁄2 or 9⁄2; n = 6, j =
13⁄2).
8th shell: 58 states (n = 6, j = 1⁄2, 3⁄2, 5⁄2, 7⁄2, 9⁄2 or 11⁄2; n =
7, j = 15⁄2).

and so on.

Note that the numbers of states after the 4th shell are doubled
triangular numbers plus two. Spin–orbit coupling causes so-
called 'intruder levels' to drop down from the next higher shell
into the structure of the previous shell. The sizes of the
intruders are such that the resulting shell sizes are themselves
increased to the very next higher doubled triangular numbers
from those of the harmonic oscillator. For example, 1f2p has
20 nucleons, and spin–orbit coupling adds 1g9/2 (10 nucleons)
leading to a new shell with 30 nucleons. 1g2d3s has 30 nucleons, and addition of intruder 1h11/2
(12 nucleons) yields a new shell size of 42, and so on.

The magic numbers are then

  2
  8 = 2 + 6
 20 = 2 + 6 + 12
 28 = 2 + 6 + 12 + 8
 50 = 2 + 6 + 12 + 8 + 22

FIG. 8. Shell model levels from textbooks.

with R = (1.25/0.197) ⇤ 961/3, V 0 = .057; a = .65/0.197 (all energies in GeV , distances in inverse

GeV ) we calculated the corresponding wave functions, see Fig.9. Indeed, they have very di↵erent

FIG. 9. (Unnormalized) wave functions 2d and 1g

shapes. Note, that the former one has a node, located exactly where the latter has a maximum.

The radial dependence of densities can be taken in the form

Ru = d5050(r) � 6 2
p(r) + 2 2

n(r)

Zr = d5050(r) � 10 2
p(r) + 6 2

n(r); (A2)
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where the first term is a parameterization for the double-magic 50-50 nucleus. Their di↵erence is

shown in Fig.10.Note a certain excess of n at large r: while it is qualitatively similar to a “halo”

discussed in literature, but it is not due to manybody e↵ects but just follows from the shapes of

the single-body wave functions.
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The now famous STAR experiment has shown that 
96Zr and 96Ru turned out to be rather different, more than by 4/96

2

13 Compare with isobar data 

Use these ratios to probe shape and radial structure of nuclei. 

Large !3,Zr

Large !2,Ru

Nuclear deformation   
+ Radial structures 

H. Xu et al., arXiv:1808.06711, 2103.05595
Q. Shou et al., arXiv:1409.8375

STAR, arXiv:2109.00131

C. Zhang et al., arXiv:2109.01631

G. Giacalone et al., 2105.01638

from Chunjian Zhang DNP STAR talk 

FIG. 1. Four observables defined in the plot, all in form of ratios for RuRu to ZrZr collisions from STAR
as a function of centrality. The lower scale is number of tracks per unit rapidity, the upper scale with thin
dashed lines are percentage of total cross section.

In order to understand why 96
40Zr and 96

44Ru are so di↵erent, and in what exact sense, we turn to

conventional nuclear physics, looking in particular at:

(i) the wave functions of “valence” quasiparticle p and n states in nuclear shell model

(ii) at structure of “excitation trees” for both nuclei. Those suggest suggest quite di↵erent dynamics

of shape fluctuations. Rotational bands indicate deformation of Ru, but not Zr.

II. HISTORY OF THE NOTION OF “INTRINSIC NUCLEAR SHAPE” AND ITS
MANIFESTATIONS IN HEAVY ION COLLISIONS

The idea that some nuclei are spherical and some are deformed goes back to 1950’s and by now

it takes its proper place in textbooks. What is important for this paper is to underline is that

it is not formulated in terms of the ground state wave function |0i (which for even-even nuclei

are “spherical” 0+ always). Ultimately, these theories aim at description of certain number of

excitations, with calculations of transition matrix elements between those. Certain sets of these

states |ni are interpreted in terms of particular objects, such as “rotor”, ”vibrator” etc. Their

parameters – momentum of inertia ⇥ in the former case, vibrational frequency in the latter – are

suppose to describe their energies En, diagonal and non-diagonal matrix elements of operators (such

as magnetic dipole or electric quadrupole moments). Such description can be viewed as some crude

classical projection onto a situations in which certain “collective variables” describing deformation

�2, �, �3... possess certain “classical” values.

More modern way of approaching these issue is based on notion of states possessing variable

16
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where the first term is a parameterization for the double-magic 50-50 nucleus. Their di↵erence is
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because, peole concluded,’they have 
different nuclear shapes 

But what exactly are “nuclear shapes”?



Shape variables were 
introduced in nuclear  
structure calculations, 

with the idea that 
out of states with their  

fixed values  
one can construct 

ground and excited states 
with needed symmetris 
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potential with a single minimum at the origin, corresponding to basic spherical shape. Its potential

seems to be independent on angle �.

But already the isotope 102Zr (with 3 extra n pairs.) show a completely di↵erent potential:

now the minimum is at large � and zero �. Adding 4 more neutron pairs to 110Zr we again find

that another “mini phase transition” line was crossed, since the shape of the e↵ective potential gets

qualitatively di↵erent once again.
14
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FIG. 13. Contour plots in the (�, �) plane of the lowest eigen-potential surface, E�(�, �), for the 92�110Zr isotopes.

the critical-point by mean field methods.
The classical analysis above and the quantum analy-

sis of Sections IV and V suggest coexisting Type I and
Type II QPTs, which is the defining property of IQPTs.

VII. RESULTS: EVOLUTION OF
OBSERVABLES ALONG THE ZR CHAIN

In order to understand the change in structure of the
Zr isotopes, it is insightful to examine the evolution of
observables along the chain. The observables include en-
ergy levels, two-neutron separation energies, E2 and E0
transition rates, isotope shifts and magnetic moments.

A. Energy levels

In Fig. 14, we show a comparison between experimen-
tal and calculated levels, along with assignments to con-
figurations based on Eq. (26), and to the closest dynam-
ical symmetry based on the decompositions of Eq. (24),
for each state. One can see here a rather complex struc-
ture. In the region between neutron numbers 50 and
58, there appear to be two configurations, one spheri-
cal (seniority-like), (A), and one weakly deformed, (B),
as evidenced by the ratio R4/2 in each configuration,

R(A)
4/2 = 1.6, 1.6, 1.76, 1.2 and R(B)

4/2 = 2.2, 2.8, 2, 2.7,
for neutron numbers 52, 54, 56 and 58, respectively. The

value R(B)
4/2 =2.8 for 94Zr is somewhat larger, possibly as

a consequence of fluctuations due to the subshell closure
at neutron number 56. At neutron number 58, there is
a pronounced drop in energy for the states of configu-
ration (B), suggesting a slight increase in deformation,
where the 2+

1 becomes already a configuration (B) state.
At neutron number 60, the two configurations exchange
their roles, indicating a Type II QPT. This is evident
from Fig. 10, showing the exchange in the decomposi-
tion of the ground state 0+

1 from the A-configuration
(a2 =98.2%) in 98Zr to the B-configuration (b2 =87.2%)

in 100Zr. At this stage, configuration (B) appears also
to be close to the critical-point of a U(5)-SU(3) QPT, as
evidenced by the low value of the excitation energy of the
0+
3 state in 100Zr [see Fig. 6(c)], which is the first excited

0+ state of the B-configuration (b2 =92.9%). As pointed
out in Section IVB, the spectrum of states of the next
isotope, 102Zr, resembles that of the X(5) critical-point
symmetry [60].

Beyond neutron number 60, the intruder configura-
tion (B) becomes progressively strongly deformed. This
is evidenced for neutron number 62, by the small value of
the excitation energy of the state 2+

1 , E(2+
1 )=151.78 keV

(a) Exp (b) Calc

FIG. 14. Comparison between (a) experimental and (b) cal-
culated energy levels 0+

1 , 2+
1 , 4+

1 , 0+
2 , 2+

2 , 4+
2 . Empty (filled)

symbols indicate a state dominated by the normal A-
configuration (intruder B-configuration), with assignments
based on Eq. (26). The shape of the symbol [�, �, �], in-
dicates the closest dynamical symmetry [U(5), SU(3), SO(6)]
to the level considered, based on Eq. (24). Note that the cal-
culated values start at neutron number 52, while the experi-
mental values include the closed shell at 50. Data taken from
[53] (92Zr), [54] (94Zr), [55] (96Zr), [57] (98Zr), [58] (100Zr),
[59] (102Zr), [66] (104Zr), [67] (106Zr), [68] (108Zr), [30, 69]
(110Zr).
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value R(B)
4/2 =2.8 for 94Zr is somewhat larger, possibly as
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FIG. 14. Comparison between (a) experimental and (b) cal-
culated energy levels 0+

1 , 2+
1 , 4+

1 , 0+
2 , 2+

2 , 4+
2 . Empty (filled)

symbols indicate a state dominated by the normal A-
configuration (intruder B-configuration), with assignments
based on Eq. (26). The shape of the symbol [�, �, �], in-
dicates the closest dynamical symmetry [U(5), SU(3), SO(6)]
to the level considered, based on Eq. (24). Note that the cal-
culated values start at neutron number 52, while the experi-
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[53] (92Zr), [54] (94Zr), [55] (96Zr), [57] (98Zr), [58] (100Zr),
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FIG. 6. Contour plots of E(�, �) for three Zr itsotopes, displaying di↵erent symmetries

Now we return to our main problem, evaluation of the density matrix. If the collective motion is

described by a harmonic oscillator, the probability to find (configuration B) nucleus with particular

�, � is then Gaussian (11). Furthermore, when T >> ! ⇡ 2.226 � 1.582 = .644 MeV , thermal

density matrix should be given just by the classical Boltzmann factor

P (�, �) ⇠ exp
⇥
� E(�, �)

T

⇤
(18)

B. 96
44Ru: deformations and rotations

We now focus on the second nuclide used in STAR experiment. Reducing 96
44Ru problem to four

pairs, 1 nn pair and 3 pp ones, may appear a simpler problem, yet there are 4 pairs of ✓, � variables.

Doing quantum mechanics in 8-2=6 dimensions (global orientation obviously cannot matter) is still

not easy.

Fortunately, a lot of information is available about the excitations, see Fig.??. Clear separation

into excitation trees or five “bands” are shown.

The first one is a set of states with JP = 0+, 2+....18+, a typical rotational band. Since spher-

ical nucleus cannot be rotated, we learned that this band corresponds to a deformed but axially

symmetric configuration.

Two ways how information on the band can be used. We define J-dependent moment of inertia

and rotational frequency by

IJ =
J(J + 1)

2EJ
, !J =

EJ+2 � EJ

2
(19)

and get for the former (GeV �1)

IJ=1..8 = 3603.17, 6587.18, 9768.8, 12201.7, 14408.5, 17653.8, 18485.9, 21112.8

17

collisions and light-nuclei production,” Phys. Rev. C 101, 034914 (2020), arXiv:1910.08119 [nucl-th].

[9] Dallas DeMartini and Edward Shuryak, “Many-body forces and nucleon clustering near the QCD critical
point,” Phys. Rev. C 104, 024908 (2021), arXiv:2010.02785 [nucl-th].

[10] N. Gavrielov, A. Leviatan, and F. Iachello, “The Zr Isotopes as a region of intertwined quantum phase
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FIG. 4. Experimental and calculated energy levels in MeV and E2 transition rates in W.u. Levels in blue (black) belong to the
A (B) configuration. Transitions between di�erent configurations are denoted in red. For the configuration (A) experimental
levels that have no corresponding calculated levels, see Appendix A. Data is taken from [53] for 92Zr, [25, 54] for 94Zr, and
[28, 55] for 96Zr.

B(E2; 2+
3 !2+

2 )<400 and B(E2; 0+
3 !2+

2 )=34(9) W.u.
are all reproduced well by the calculation and conform
with the IBM-CM interpretation of quasi-phonon struc-
ture for configuration (B). The experimental transitions
between the configurations, B(E2; 4+

1 !2+
1 )=16+5

�13 and
B(E2; 2+

2 ! 0+
1 ) = 0.26(8) W.u. do not conform well to

the calculated values of 3 (which is within the error rage)
and 0.001 W.u. This suggests that perhaps a larger value
for the !-mixing term in Eq. (22) could be used. Such an
increase in ! (from 0.02 to 0.04 MeV), with only a minute
variation to �p, results in a significant increase of the
calculated values, placing them within the experimental
error range, while keeping the rest of the calculated tran-
sitions approximately the same. Nevertheless, in such a
scenario, the mixing between configuration (A) and (B)

0+
1 and 0+

2 states, respectively, is still very weak. Above
the energy of the experimental states that correspond to
the nd ⇡ 2 multiplet, it is more di�cult to assign states
to a certain phonon-multiplet due to the lack of data.
Specifically, the experimental 8+

1 has a dominant branch
to the 6+

4 , which in turn has a dominant branch to the 4+
1

[56] and therefore are assigned to configuration (B). Ac-
cordingly, they correspond to the calculated states with
dominant nd ⇡3 (6+

1 ) and nd ⇡4 (8+
1 ) components.

Wave functions. For 92�96Zr, the calculated ground
state (0+

1 ) has b2 = 3.9%, 7.7% and 0.4% and the 2+
1

state has b2 = 4.2%, 11.6%, 6.8%, respectively, hence
they are assigned to the (A) configuration. The 0+

2
state is almost purely configuration (B) lowest state with
b2 =96.3%, 91.8% and 99.6%, respectively. Fig. 5 depicts

FIG. 5. Blue (left) and black (right) are states corresponding to “excitation trees” growing from configura-
tions A and B, respectively.

which in particular case can be reduced to its subgroups (U(5), SU(3), SO(6) etc). Related to

that is a concept of collective motion paradigms, which correspond to such dynamical symmetries.

The simplest is spherical vibrations [U(5)], or axially symmetric [SU(3)], or �-soft deformed rotor

[SO(6)], etc. Geometrical interpretation of states obtained can be visualized by coherent states with

certain parameters, such as quadrupole shape parameters (�, �) related to the following creation

operator

b+ =
1p

1 + �2

�
s+ + �cos(�)d+

0 + �sin(�)(d+
2 + d+

�2)/
p

2
�

(16)

The IBM Hamiltonians are made of quadratic part in s, d operators and quartic one, typically in

form of quadrupole-quadrupole form, with quadrupole quadratic in s, d. The Hamiltonian averaged

over these states defines the “energy profile”

E(�, �) = h�, �|Ĥ|�, �i (17)

describing quantum motion in terms of the corresponding collective variables.

In the chart of nuclides (Z, N) there exist multiple domains in which excitation trees have the

same symmetry, and e↵ective Hamiltonian just display smooth change of parameters. They are

separated by lines of “mini phase transitions”. We put these word into parenthesis for few reasons.

First of all, these transitions happen for each ”excitation trees” individually. Second, they indicate

excitations of just several (not macroscopically large) number of pairs: therefore they would only

be observed by high accuracy data. And, finally, since (Z, N) changed in a discrete manner (by

two protons or neutrons, for even-even nuclei) there is no true critical points or singularities, but

just jumps from one phase to another.

Let us show how it looks in practice, for particular nucleus in question. The experimental and

calculated parts of the spectra, from [10], are shown in Fig.5. Focusing on configuration B excitation

tree (black, right) one observes typical set of states of a (slightly anharmonic) oscillator, with 2+

phonon state, 4+, 2+, 0+ two phonons, up to three phonons states. The ratio of their energies to

that of a single phonon are indeed close to 2, 3 etc., confirming vibrational interpretation of the

tree. three phonons etc.

The corresponding picture of E(�, �) is given in Fig.6, for three Zr isotopes. As one can see, they

correspond to qualitatively di↵erent ”phases” of configuration B. The one we focus on, 96Zr has a
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describing quantum motion in terms of the corresponding collective variables.

In the chart of nuclides (Z, N) there exist multiple domains in which excitation trees have the

same symmetry, and e↵ective Hamiltonian just display smooth change of parameters. They are

separated by lines of “mini phase transitions”. We put these word into parenthesis for few reasons.

First of all, these transitions happen for each ”excitation trees” individually. Second, they indicate

excitations of just several (not macroscopically large) number of pairs: therefore they would only

be observed by high accuracy data. And, finally, since (Z, N) changed in a discrete manner (by

two protons or neutrons, for even-even nuclei) there is no true critical points or singularities, but

just jumps from one phase to another.

Let us show how it looks in practice, for particular nucleus in question. The experimental and

calculated parts of the spectra, from [10], are shown in Fig.5. Focusing on configuration B excitation

tree (black, right) one observes typical set of states of a (slightly anharmonic) oscillator, with 2+

phonon state, 4+, 2+, 0+ two phonons, up to three phonons states. The ratio of their energies to

that of a single phonon are indeed close to 2, 3 etc., confirming vibrational interpretation of the

tree. three phonons etc.

The corresponding picture of E(�, �) is given in Fig.6, for three Zr isotopes. As one can see, they

correspond to qualitatively di↵erent ”phases” of configuration B. The one we focus on, 96Zr has a

The main question is,  
what it has to do with 

the initial state 
in heavy ion collisions? 

Does it help us to find the  probability to   
see given values of collective coordinates?
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FIG. 10. default

where the first term is a parameterization for the double-magic 50-50 nucleus. Their di↵erence is

shown in Fig.10.Note a certain excess of n at large r: while it is qualitatively similar to a “halo”

discussed in literature, but it is not due to manybody e↵ects but just follows from the shapes of

the single-body wave functions.
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High energy collisions of strongly deformed nuclei:
An old idea with a new twist

E.V. Shuryak
State University of New York, Stony Brook, NY 11794, USA

UU collisions can provide about 30% larger densities compared to central PbPb ones. New aspect
is generation of rather deformed initial states. We show that those can be effectively used to resolve
a number of outstanding issues, from corrections to hard processes, elliptic flow (the QGP push
issue), and the mechanism of J/ψ suppression. UU collisions are studied by a simple Monte-Carlo
model, and it is shown how selecting two control parameters - the number of participant nuclei and
deformation - one can select particular geometry of the collision.

I. INTRODUCTION

An “old idea” mentioned in the title is to select the
head-on “long-long” collisions, by simply triggering on
maximal number of participants Np. Although it is
kind of a folklore of the field, the only written mate-
rial on it I found is a memo [1] written by P.Braun-
Munzinger. His estimates show that, due to larger A
and deformation, the gain in energy density for UU over
AuAu∗ can reach the factor 1.8. Although our study had
found smaller numbers, new applications are proposed.
They are mostly related with a different geometry of the
collisions, the parallel one, which incorporates about the
same energy density as available in central PbPb colli-
sions, with significant deformation.
The general attitude of this study was to look how UU

collisions can help to understand the existing open issues
of the SPS heavy ion program. It certainly is of interest
to RHIC program, although it is probably premature to
discuss it now. The emphasis is made here on event se-
lection, and other interesting options (like using targets
with crystals with naturally aligned U) are not studied.
Let me start with outlining simple argument for head-

on collisions. Representing U as a homogeneous ellipsoid
with one long (Rl) and two short (Rs) semi-axis, one can
related their ratio to deformation parameter δ used in
nuclear physics (see e.g. [2])

Rl

Rs
= (

1 + 4δ/3

1− 2δ/3
)1/2 (1)

For δU ≈ .27 this ratio is 1.29, the basic deformation
ratio to be used below.
It is convenient to think first in terms of “wounded”

or “participant” nucleons first, a purely geometric con-
cept, and only then consider real multiplicity (entropy)
production. (We will follow such logic throughout the
paper.) Let us thus start with comparing the density
of participants per transverse area np = Np/(πR2

s), for
“long-long” collisions of the deformed nuclei vs the spher-
ical one with the same A and R = (R2

sRl)1/3. The effect
only comes from reduction of the area, so

∗Below we use PbPb instead.

ndeformed
p

nspherical
p

=
Adeformed

Aspherical
(
R

Rs
)2 (2)

For A=238 we will use Rl = 8.4, Rs = 6.5, R = 7.0fm,
and so deformation alone increase the np by 1.16. For
U and Pb (RPb=6.78 fm in such model) one gets the
participant density gain 1.24.
Transferring this into initial entropy density, one

should recall that for (spherical) AA collisions

dN

dy
(y = 0) ∼ A1+α (3)

with α ≈ .12. So, assuming as usual that final multi-
plicity is proportional to the initial entropy density, we
see that there is a correction to the simple idea that each
participant nuclei gives the same (energy dependent) con-
tribution to the spectrum. This non-zero α incorporates
both (i) additional increase in multiplicity, and (ii) ex-
tra stopping (shift toward mid-rapidity): we are only
interested in their combination dN/dy(y=0). Further-
more, it is natural to think that transverse dimensions
of the system enter trivially here, and so these extra ef-
fects due to increased density. With this additional factor
∼ n3α

p we obtain the UU/PbPb total initial density gain†

1.241+3α = 1.34.
The main questions addressed in this paper are two-

fold. One is to make some realistic estimates of the effect,
not just for a particular configuration but for ensemble
of events selected by some experimentally accessible cri-
teria. The second is to outline possible applications of
high energy collisions of the deformed nuclei.

II. UU COLLISIONS VERSUS PBPB: THE

SIMULATION

Simple Monte-Carlo program was written, which ini-
tializes nucleons inside nuclei and follow their paths

†At fixed time after the crossing, a la Bjorken. If more
stopping means earlier equilibration, the available density is
larger.
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1

Npart and v2. Is it really possible to select the partic-
ular geometries of the collisions we want? In Fig.4(a)
one can see that it is to a significant effect correct: the
less − deformed sample is rich in the region cosθ ≈ 1,
or in “head-on” collisions, while the more − deformed
collisions have none of them, and concentrate at small
cosθ. In Fig.4(b) one can see that the same selection
of events correspond to the difference of the azimuthal
angles φ1 − φ2 to be peaked around 0, or have a flat
distribution, respectively.

FIG. 3. Distribution over participant density np [fm−2]
vs deformation R+/R−, for (a) UU (Npart > 428) and (b))
PbPb (Npart > 374) collisions, respectively.

FIG. 4. Distributions of original angles for UU collisions,
Np > 0.9(2A). (a) Distribution in cos(θ), the angle between
the long axis of U and the beam. The solid (dotted) his-
tograms are for less deformed R+/R− < 1.1 ( more deformed
R+/R− > 1.2) initial states . (b)Distribution in difference
between polar angles |φ1 − φ1|, solid (barred) histograms are
for less and more deformed collisions, same selection.

Finally note also that the figures presented above have
shown only the density of participants np: let us now
recall the correction factor ∼ n3α

p we discussed in the In-
troduction for the initial energy density. It can be seen
as additional non-linear deformation of the axis, when
going from np to dN/dy. The contrast between UU and
PbPb in dN/dy is larger by another 8%. Note also, that
we have only discussed local quantities, like participant
density np. For many applications the absolute size of
the system is of similar and sometimes even larger im-
portance.

3

UU

PbPb

density (fm^2)

deformation 

through another one. Since we are not really inter-
ested in peripheral collisions, we did not included dif-
fuse boundary of nuclei and used the ellipsoids described
above. We also ignored probabilistic nature of the inter-
action, considering transverse distance between nucleons
R < (σin/π)1/2 to be sufficient reason to make both of
them participants. So, the only source of fluctuations‡

are random positions of the nucleons inside the nucleus.
Spherical nuclei have only one parameter - impact pa-

rameter b - which in such classical treatment determines
the mean number of participants. Deformed nuclei have
in general 5 such parameters: b and 4 spherical angles
θi,φi, i = 1, 2 indicating the orientation of their longer
axes at the collision moment. The main objective of the
calculation is to see how well one can actually fixed those,
by using experimentally available information.
Few words about our definitions. After all participant

nuclei are identified, we calculated the tensor

Tij =< xixj > (4)

in transverse plane, diagonalize it and find its eigenval-
ues R2

+, R
2
−. The density of participants we use below

is defined as np = Npart/(πR+R−) and deformation as
R+/R−.

FIG. 1. Density distribution with selection Np > 0.9(2A).
Solid (dashed) are for UU and PbPb collisions

If no selection is made, the density of the participants
np shown in 1 is very similar, except for the tail region. A
gain in np of the order of 16% seem indeed possible, with
reasonable loss of statistics. However, if one introduces
“centrality” cuts, the situation is different. We would
define a fair “centrality cut” by restricting Np > 0.9(2A),

‡And it is by no means assumed to be accurate account for
fluctuations.

with corresponding A for for both cases. Triggering on
large Np (or forward energy) one effectively eliminates
spectators (and many complicated geometries).

FIG. 2. Distribution of R+/R− (long-to-short semi-axis
in transverse plane), with selection Np > 0.9(2A). Solid
(dashed) are for UU and PbPb collisions

The first striking feature one finds after such cut is that
distribution of the deformations of the initial 2d ellipsoid
R+/R− is very different: see figure Fig.2. The ratios as
large as 1.35 are accessible, while in PbPb collisions all
the “central” collisions are very spherical. The maximal
deformation, not surprisingly, is of the order of deforma-
tion of U§ Those correspond to collisions with two long
directions parallel to each other and orthogonal to the
beam. It is about the same as is obtained for medium
b for spherical nuclei, but at larger energy density and
larger system (see below).
The joint distributions in participant density - defor-

mation plane for (most central) UU and PbPb collisions
are compared in Fig.3(a,b). The main message one can
get from it is that strong correlation between the defor-
mation and density, existing for spherical nuclei, is to
some extent relaxed for UU.
How one can measure the 2d deformation of the ini-

tial conditions? The measured elliptic deformation of
spectra of secondary particles, pions or nucleons, v2, is
proportional to this initial deformation (with EOS de-
pending coefficient) and should have similar distribution.
divide measured distribution over v2 into more and less
deformed.
Suppose now that one uses both control parameters,

§Note that it is comparable to what is obtained for medium b
for spherical nuclei, but now reached for larger energy density
and larger system.
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At the collision moment 
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in which there is a virtual state at some moment 

which then decays into Hamiltonian bound states
ppnn system 
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3 Jacobi vectors

3

collective variables |�2, �, ...i and the model Hamiltonians averaged over those provide certain “po-

tentials”

h�2, �, ..|Ĥ|�2, �, ...i = E(�2, �...) (1)

If the minimum happens to be at zero variables, the nuclei is spherical. The oscillations around

the minimum defines “phonon” states, in terms of which the lowest excitations are described. If

these potentials can have two or more minima, one may define several “vibrators” and look for

their excitations among the experimentally observed states. Sometimes the potentials are flat in a

wide range of variables, and the nucleus is declared “soft” with indefinite shape. We will return to

specific examples of that relevant for our ”isobar” nuclei below, from nuclear structure literature.

Not being involved in any of that, I first met the issues we will discuss in this paper in the

last year of the previous century (just before the first run of RHIC) [2] considering what would

happen if we would collide a well-deformed nucleus such as 238U . It seemed obvious that classical

notion of random directions of deformation axes of both nuclei would lead to a variety of situations

(“tip-to-tip” etc), and my then primitive simulations addressed a question whether one be able to

distinguished them experimentally. Sending the paper to PRC I got a referee report proclaiming

the paper wrong and very misleading. The argument was that since the ground state is JP = 0+,

it is spherically symmetric, and thus the idea of intrinsic nuclear shape is nonsense.

My defense was the argument that I actually meant not the ground state but a wave packet

made out of many excited states. (The same idea as in this note.) It eventually succeeded and

paper get published (but it took time, moving publication of the paper into the next millennium) .

Yet then I would have hard time to explain which specific set of excitations one would need to

use. This is the question entertained in the present note. We will suggest a very direct – albeit

still model-dependent – way to use the potentials E(�2, �...) from nuclear structure calculations to

define the initial state in high energy heavy ion collisions.

III. MEASUREMENTS AND THE DENSITY MATRICES

But before we discuss the main issue here, let me mention a previous problem I was involved

with, that of nuclear clustering and their influence on light nuclei production. Imagine several

nucleons forming some “precluster”, which at the “freezeout moment” would go free into physical

final states. Here we have some virtual wave package being “measured”, namely get decomposed

into states of the Hamiltonian.

Specifically, we [3] discussed the problem of how a cluster of four nucleons can go into states of

He4, He3 + p, t + n, d + d, ppnn. Well, even not so many particles still have 12 coordinates, and

working with 12 (or 9 of center of mass motion is eliminated) dimensional function is not practical,

so one need a single collective variable. Fortunately, it was known to be a hyperdistance – the

sum of all 9 Jacobi coordinates squared, which is just proportional to sum of all six inter-particle

distances ⇢2 ⇠
P

i>j R2
ij . Therefore we set up a task to calculate the corresponding density matrix,

traced over all variables but ⇢. In other words, we set up a calculation of the distribution over it,

P (⇢), in a matter made of interacting nucleons.

(The next step – decomposition in Hamiltonian states – is also fortunately simplifies, since it

was shown already in 1960’s that e.g. the ground state of He4 is very well described by a function

hyperdistance = collective variable
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P (⇢) is the density matrix 

at freezeout the system is well equilibrated, 
so it was obvious that the density matrix is 

of the thermal state
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of this single variable, the same hyperdistance ⇢. In fact we even found it to be so for the second

excited state of He4 as well.)

Before going into description of technical tools used, let me emphasize a connection of this

problem to the problem at hand. In both we try to establish a connection between a set of

stationary states of the Hamiltonian with a virtual state, possessing certain distribution over some

collective variables.

Formally, one may think of this collective density matrix to be calculated from all Hamiltonian

stationary states,, traced all coordinates but one, taken with some coe�cients Pn

P (X) =
1X

n=0

Z

xi

| n(X, xi)|2Pn (2)

where summation over all non-collective coordinates xi is implied.

In the 4-nucleon problem we had a drastic simplification: the preclusters we were looking for

came from well equilibrated matter. Therefore we cold use Boltzmann factors as the proper weight

Pn = exp(�En/T ). If so, the collective distribution P (X) is nothing else but a thermal density

matrix. As we will discuss soon, there are certain theoretical tools for its calculation.

IV. “PREHEATING” OF NUCLEI BEFORE THE COLLISION MOMENT

The act of high energy collision of two nuclei leads to “act of measurements” , of all locations

of the nucleons. Naively, one should simply take a square of the full wave function of the nuclei

| (~xi)|2 as a function of all coordinates, and that will give us the nucleon distribution in the initial

state.

The problem is, we need to understand first which wave function to take. For example, we

would like to know the probability distribution over collective variables P (�2, �) at the moment of

a collision. We know that should come as certain projection operation from some excited states ,

belonging to some “band” or “excitation tree”. How can one select their weights?

Generically, an argument goes like this. Let an act of measurement fixes each coordinate within

certain uncertainty �~xi. The corresponding momenta gets also uncertain, and there should be an

uncertainty in the total energy �E. All excited states with En < �E have as good a reason to

contribute to the density matrix (2), as the ground state.

Now, what the probabilities Pn in that expression should be? Here we would like to envoke

standard statistical argument. If �E is large enough to encompass a large number of state is, then

we know that the most important factor in the sum over states would be the density of states itself,

or its entropy

N(E) ⇠ exp[S(E)] (3)

Standard expansion of it, with �S/�E = 1/T , generates Boltzmann weight exp(�E/T ). All it

means that nuclei at the collision moment can be viewed as “preheated” ones. If so, the density

matrices over relevant collective variables can be evaluated as thermal ones.

Here comes the main question: what can this temperature of preheating be? Is it that we just

suggest that “in anticipation” of the QGP production in the collision, the preheating temperature

be what we usually call T0 in hydrodynamical applications, namely hundreds of MeV s ? The

What are the weights?

Hamiltonian states

States should be from a ``band” (excitation tree) 
for which particular collective H applies, see below

My suggestion: 
also thermal  

with some effective  
temperature T
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answer is no, it is not. The reason is equilibration of all degrees of freedom to a common T0 require

certain time, and is commonly assumed to be about ⌧ ⇠ 1/2 fm/c after the collision. At the

collision moment one should discuss transverse and longitudinal degrees of freedom separately.

The accuracy of localization in the transverse plane ~x? for each nucleon is given by a typical

impact parameter in NN respective collisions. An estimate of it is

�x? ⇠
r

�NN

⇡
⇠ 1 fm (4)

The uncertainty relation then tells us that each nucleon gets a kick of magnitude �p? ⇠ ~/�x? ⇠
0.2 GeV . This corresponds to the nucleon kinetic energy

�E? ⇠
�p2

?
2MN

⇠ 20 MeV (5)

and we suggest the transverse temperature T? should be of this order.

(The exchanges of longitudinal momenta in NN collisions are much much larger, but they are

not relevant for the distribution in the transverse plane we discuss. Both small T? and huge Tlong

will eventually equilibrate into common T0, but we do know that did not happen at the collision

moment. If they would, the state at the collision moment would have very high T and would need

a description in terms of quarks and gluons, a la homogeneous CGC gluon state without nucleon

correlations. We do know it is not so, or else fluctuations of higher angular harmonics would be

much much smaller than what it is actually observed.)

Uncertainty in energy means that we will not deal with the ground state of the nucleus, but

some density matrix made out of excited states with En < �E?. An idea of how it will look

like can be made by assessing another density matrix corresponding to Euclidean time duration

� ⇠ ~/�E?. A periodic motion with such “Matsubara” time corresponds to density matrix of the

system at certain e↵ective “transverse temperature”

T? ⇠ �E? ⇠ 20 MeV (6)

In other terms, we suggest that “in anticipation of a collision” the nuclei are “preheated” to such

temperature.

One may further view formation of such state as initial “preheating” of the nuclei by some

“thermal vacuum” quanta, which act on the nuclei in its original zero-T state and excite it. The

vacuum of course has no energy to spare, unless it is borrowed and then returned, at the time of

the collision. Because of relativistic time delation, this time in the CM (collider) frame is increased

by �CM
1.

Of course, such picture of “preheating” of nuclei does not in general imply that the resulting

state is that of thermal equilibrium. It is one with the largest entropy out of pre-selected states in

a particular ”band” or ”excitation tree”. Also we know that due to “quantum chaos” phenomenon

are “random” in the sense that some single-body distributions are close to thermal density matrices.

This is know to be true even for individual excited states, provided they are not too close to the

ground state. Thermal description of such states goes in fact as far in history as Bohr’s “compound

nuclei”.

1 The analogy of such process to DGLAP evolution of a nucleon, from its ground state to a multi-parton states with

near-maximal entropy was suggested to us by D.Kharzeev in a discussion.
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V. CLASSICAL DISTRIBUTIONS, QUANTUM PATH INTEGRALS AND
SEMICLASSICAL “FLUCTONS”

Let us start from the simplest proposal we have: to use the “deformation potentials” E(�2, �...)

calculated by nuclear structure specialists in classical Boltzmann distribution

P (�2, �..) ⇠ exp[�E(�2, �...)

T?
] (7)

in defining the nuclear shape distribution. (Rather than picking up the value of shape coordinates

at the potential minimum). Presence of two or more minima are not in this case a problem , nor

is it existence of extended flat regions with about the same energy.

Of course, this proposal in fact corresponds to the high-T limit. For a general case one should

use more complicated (but well developed) computational tools for evaluation of thermal density

matrices known in many di↵erent branches of physics, especially in condense matter and nuclear

physics.

The density matrix with thermal weights, defined in (2), is the probability P (x0) to find a system

with a particular value x0 of one coordinate. The foundation of the method is the Feynman’s path

integral representation of the density matrix analytically continued to imaginary (Euclidean) time,

defined as a periodic variable with period � = ~/T .

P (x0; �) = N
Z x(�)=x0

x(0)=x0

Dx(⌧) e�SE [x(⌧)]/~ (8)

It should be taken over the periodic paths, which start and end at the observation point x0, with

the period matching the duration of the Matsubara time on the circle

� =
~
T

, (9)

This expression has led to multiple applications, perturbative (using Feynman diagrams) or numer-

ical (e.g. lattice gauge theory).

At the semiclassical level, the theory is based on a classical (minimal action) periodic path, which

extends from some arbitrary point x0 to the “classical vacuum”, the minimum of the potential, and

return. This path has been introduced in [4] and was named “flucton” (see also the lectures [5]).

In [3] this version of the semiclassical approach was applied for quantum-mechanical example

at zero temperature. This, as well as subsequent paper [6], was aimed at developing higher order

corrections in the semiclassical series, with the one- and two-loop quantum corrections explicitly

calculated, by standard Feynman diagram methods for a number of quantum-mechanical problems.

These results were re-derived in [7] from generalized Bloch equation.

Applications of the “flucton” method to multi-dimensional quantum systems at finite-temperature

has been developed in [8], which we briefly explain here.

The “flucton” paths are classical solutions of the equations of motion in imaginary time (that is

for a particle with Euclidean Lagrangian LE subjected to the periodic boundary condition x(0) =

x(�) = x0. Fluctons have minimal action Sflucton(x0) and therefore, they dominate the path

integral (8), provided that SE � ~, and

P (x0; �) ⇠ exp
�

� Sflucton(x0)
�

(10)
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use more complicated (but well developed) computational tools for evaluation of thermal density

matrices known in many di↵erent branches of physics, especially in condense matter and nuclear

physics.

The density matrix with thermal weights, defined in (2), is the probability P (x0) to find a system

with a particular value x0 of one coordinate. The foundation of the method is the Feynman’s path

integral representation of the density matrix analytically continued to imaginary (Euclidean) time,

defined as a periodic variable with period � = ~/T .

P (x0; �) = N
Z x(�)=x0

x(0)=x0

Dx(⌧) e�SE [x(⌧)]/~ (8)

It should be taken over the periodic paths, which start and end at the observation point x0, with

the period matching the duration of the Matsubara time on the circle

� =
~
T

, (9)

This expression has led to multiple applications, perturbative (using Feynman diagrams) or numer-

ical (e.g. lattice gauge theory).

At the semiclassical level, the theory is based on a classical (minimal action) periodic path, which

extends from some arbitrary point x0 to the “classical vacuum”, the minimum of the potential, and

return. This path has been introduced in [4] and was named “flucton” (see also the lectures [5]).

In [3] this version of the semiclassical approach was applied for quantum-mechanical example

at zero temperature. This, as well as subsequent paper [6], was aimed at developing higher order

corrections in the semiclassical series, with the one- and two-loop quantum corrections explicitly

calculated, by standard Feynman diagram methods for a number of quantum-mechanical problems.

These results were re-derived in [7] from generalized Bloch equation.

Applications of the “flucton” method to multi-dimensional quantum systems at finite-temperature

has been developed in [8], which we briefly explain here.

The “flucton” paths are classical solutions of the equations of motion in imaginary time (that is

for a particle with Euclidean Lagrangian LE subjected to the periodic boundary condition x(0) =

x(�) = x0. Fluctons have minimal action Sflucton(x0) and therefore, they dominate the path

integral (8), provided that SE � ~, and

P (x0; �) ⇠ exp
�

� Sflucton(x0)
�

(10)
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FIG. 2. Two sketches explaining properties of the flucton classical paths. The upper one shows the (flipped)
potential �V (x) versus its coordinate. The needed path starts from arbitrary observation point x0 (red
dot), goes uphill, turns back at the turning point xturn (blue dot), and returns to x0 during the required
period � = ~/T in imaginary time. The lower plot illustrates the same path as a function of Euclidean time
⌧ defined on a “Matsubara circle” with circumference �.

This definition works for both T = 0 and T 6= 0, and works for multidimesional systems.

The Euclidean time has i and thus momentum is imaginary and kinetic energy flips sign. It is

more convenient to flip sign of the potential energy V ! �V in the Lagrangian and EOM. Then

the potential energy minima become maxima. In Fig.2 we provide two sketches explaining how

these classical paths look like. At zero temperature, because in Euclidean time the potential is

inverted, the particle is “sliding” from the maximum at x = 0 to x = ±1. Most of the previous

applications were at T = 0 (� = 1) and the slide was always started from the maximum, at zero

energy. At nonzero T such slides also start with zero velocity but from a certain “turning point”

xturn and proceed toward the observational point x0.

The nuclear potentials as a function of collective deformation parameters can be approximated

by some anharmonic oscillators, or perhaps sometimes even the harmonic ones. Application of the

method for harmonic and anharmonic oscillators are described in detail in [8], in particular it was

demonstrated that for the latter the density matrix calculated from (2) via sum over O(100) states

and via classical flucton agree very well. For harmonic oscillator the result is analytic the density

matrix element

P (x0; �) ⇠ exp

"
� m!x2

0

coth(�!2 )

#
. (11)

with the exponent corresponding to classical “flucton” path

xfl = x0
e(��|⌧ |)! + e|⌧ |!

e�! + 1
, ⌧ 2 [��/2, �/2] . (12)

Note that at high T � ! the exponent becomes m!2x2
0/2T = V (x0)/T corresponding to classical

Boltzmann factor. In terms of flucton path this limit correspond to the case when particle does

not move at all.

Thermal density matrix and path integrals
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Let us now proceed to illustrate a nontrivial problem, the anharmonic oscillator, more relevant

to generic potentials with a minimum. It is defined by

SE [x(⌧)] =

I
d⌧

✓
ẋ2

2
+

x2

2
+

g

2
x4

◆
. (13)

The tactics used in the previous example are not easy to implement: in particular, the period

condition defining the energy E needs to be solved numerically for each value of the x0. Further-

more, using energy conservation leads naturally to ⌧(x) representation of the path, rather than the

conventional x(⌧). After trying several strategies we concluded that the simplest way to solve the

problem is:

(i) solve numerically the second-order equation of motion,

ẍ =
@V (x)

@x
= x + 2gx3 , (14)

starting not from the observation point x0 but from the turning point xturn at ⌧ = ��/2.

This is easier because the velocity vanishes at this point, and a numerical solver can readily

be used;

(ii) follow the solution for half period �/2 and thus find the location of x0 = x(⌧ = 0);

(iii) calculate the corresponding action and double it, to account for the other half period ⌧ 2
(0, �/2).

Notice that this method provides x0 as an output after solving the equations of motion with

initial conditions x(��/2) = xturn and ẋ(��/2) = 0. One could also tweak a bit the method to use

x0 it as an input by using the constraints x(0) = x0 and ẋ(��/2) = 0.

FIG. 3. Flucton path for the anharmonic oscillator with g = 1 and T = 1 (in units of the mass), for the
observation point x0 = 2. Notice that, as expected, ⌧ 2 (��/2, �/2) with � = 1/T = 1 and x(⌧ = 0) = x0.
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In Fig. 3 we show the numerical solution of the flucton path for the anharmonic oscillator with

g = 1 and T = 1 (in units of the mass). We choose the observation point x0 = 2, which is reached

as expected, at ⌧ = 0 (cf. Fig. 2). The flucton is periodic in ⌧ with period � = 1/T .
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FIG. 4. Left panel: Density matrix P (x0) vs x0 for anharmonic oscillator with the coupling g = 1, at
temperature T = 1, calculated via the definition of summing Boltzmann-weighted states (line) and the
flucton method (points). The line is based on 60 lowest state wave functions found numerically. Right panel:
Comparison of the logarithmic derivative of the density matrix of the upper panel.

Here we present the upper panel of Fig. 4 comparing the summation over 60 squared wave

functions, and Boltzmann weighted (solid line), with the result of the flucton method (points) at

T = 1 (in units of the mass). The coupling is set to g = 1. For additional comparison we also

got numerical results of a path integral Monte Carlo calculation with the same parameters (not

shown).

As a semiclassical approach one expects that the flucton solution works better when the action is

large, i.e. for large values of x0. However, one observes that the flucton systematically overestimates

the solution based on the Schrödinger solution. Part of the discrepancy comes from normalization

issues as described in [6]. To remove those it is enough to compare the logarithmic derivative of the

density matrix d log P (x0)/dx0. In the bottom panel of Fig. 4 we show the logarithmic derivative

of the density matrix in linear scale. While the agreement is nearly perfect, a small di↵erence can

still be detected. We ascribe it to the “loop” corrections to the thermal flucton solution [6].

(As we already mentioned, the actual application on which [8] was focused was multi-nucleon

correlations at freezeout stage of heavy ion collisions, important for light nuclei production. This

problem is multi-dimensional and thus one by necessity needs to define one collective variable

hyperdistance ⇢ and study thermal density matrix P (⇢). Derivation of “flucton” path was based on

corresponding Schreodinger equation in 9 dimensions. The method was checked later in [9] where

finite-T path integral was done numerically. )
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FIG. 4. Experimental and calculated energy levels in MeV and E2 transition rates in W.u. Levels in blue (black) belong to the
A (B) configuration. Transitions between di�erent configurations are denoted in red. For the configuration (A) experimental
levels that have no corresponding calculated levels, see Appendix A. Data is taken from [53] for 92Zr, [25, 54] for 94Zr, and
[28, 55] for 96Zr.

B(E2; 2+
3 !2+

2 )<400 and B(E2; 0+
3 !2+

2 )=34(9) W.u.
are all reproduced well by the calculation and conform
with the IBM-CM interpretation of quasi-phonon struc-
ture for configuration (B). The experimental transitions
between the configurations, B(E2; 4+

1 !2+
1 )=16+5

�13 and
B(E2; 2+

2 ! 0+
1 ) = 0.26(8) W.u. do not conform well to

the calculated values of 3 (which is within the error rage)
and 0.001 W.u. This suggests that perhaps a larger value
for the !-mixing term in Eq. (22) could be used. Such an
increase in ! (from 0.02 to 0.04 MeV), with only a minute
variation to �p, results in a significant increase of the
calculated values, placing them within the experimental
error range, while keeping the rest of the calculated tran-
sitions approximately the same. Nevertheless, in such a
scenario, the mixing between configuration (A) and (B)

0+
1 and 0+

2 states, respectively, is still very weak. Above
the energy of the experimental states that correspond to
the nd ⇡ 2 multiplet, it is more di�cult to assign states
to a certain phonon-multiplet due to the lack of data.
Specifically, the experimental 8+

1 has a dominant branch
to the 6+

4 , which in turn has a dominant branch to the 4+
1

[56] and therefore are assigned to configuration (B). Ac-
cordingly, they correspond to the calculated states with
dominant nd ⇡3 (6+

1 ) and nd ⇡4 (8+
1 ) components.

Wave functions. For 92�96Zr, the calculated ground
state (0+

1 ) has b2 = 3.9%, 7.7% and 0.4% and the 2+
1

state has b2 = 4.2%, 11.6%, 6.8%, respectively, hence
they are assigned to the (A) configuration. The 0+

2
state is almost purely configuration (B) lowest state with
b2 =96.3%, 91.8% and 99.6%, respectively. Fig. 5 depicts

FIG. 5. Blue (left) and black (right) are states corresponding to “excitation trees” growing from configura-
tions A and B, respectively.

which in particular case can be reduced to its subgroups (U(5), SU(3), SO(6) etc). Related to

that is a concept of collective motion paradigms, which correspond to such dynamical symmetries.

The simplest is spherical vibrations [U(5)], or axially symmetric [SU(3)], or �-soft deformed rotor

[SO(6)], etc. Geometrical interpretation of states obtained can be visualized by coherent states with

certain parameters, such as quadrupole shape parameters (�, �) related to the following creation

operator

b+ =
1p

1 + �2

�
s+ + �cos(�)d+

0 + �sin(�)(d+
2 + d+

�2)/
p

2
�

(16)

The IBM Hamiltonians are made of quadratic part in s, d operators and quartic one, typically in

form of quadrupole-quadrupole form, with quadrupole quadratic in s, d. The Hamiltonian averaged

over these states defines the “energy profile”

E(�, �) = h�, �|Ĥ|�, �i (17)

describing quantum motion in terms of the corresponding collective variables.

In the chart of nuclides (Z, N) there exist multiple domains in which excitation trees have the

same symmetry, and e↵ective Hamiltonian just display smooth change of parameters. They are

separated by lines of “mini phase transitions”. We put these word into parenthesis for few reasons.

First of all, these transitions happen for each ”excitation trees” individually. Second, they indicate

excitations of just several (not macroscopically large) number of pairs: therefore they would only

be observed by high accuracy data. And, finally, since (Z, N) changed in a discrete manner (by

two protons or neutrons, for even-even nuclei) there is no true critical points or singularities, but

just jumps from one phase to another.

Let us show how it looks in practice, for particular nucleus in question. The experimental and

calculated parts of the spectra, from [10], are shown in Fig.5. Focusing on configuration B excitation

tree (black, right) one observes typical set of states of a (slightly anharmonic) oscillator, with 2+

phonon state, 4+, 2+, 0+ two phonons, up to three phonons states. The ratio of their energies to

that of a single phonon are indeed close to 2, 3 etc., confirming vibrational interpretation of the

tree. three phonons etc.

The corresponding picture of E(�, �) is given in Fig.6, for three Zr isotopes. As one can see, they

correspond to qualitatively di↵erent ”phases” of configuration B. The one we focus on, 96Zr has a

13

It is not constant but growing with J , remaining significantly smaller than the moment of inertia

for “solid state sphere rotation”

Isolid = (2/5) ⇤ MtotR
2 ⇡ 32400.GeV �1

Therefore, only a part of nuclear matter is actually rotating (which is known since 1950’s).
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FIG. 7. Excitation levels of 96Ru (replotted from the BNL webpage of nuclear excitations)

At the other hand, consider one compact Cooper pair sitting at the equator: it will add to

moment of inertia an amount

Ipair = 2MR2 ⇡ 1700GeV �1

which is smaller than the observed IJ values. But, of course, there are four Cooper pairs sitting

somewhere on a sphere, and the observed values can correspond to some particular arrangements

of those. Clearly, as J grows, the pairs become unpaired by centrifugal force and become “normal”,

thus growing IJ .

Looking at !J from the rotational band one finds that it is nearly constant. This indicates that

all excitations rotate with about the same rotational frequency, and all increase in J is dues to

increase in momentum of inertia. The “unpairing” of Cooper pairs is not a sharp transition, like

observed in heavier nuclei, but gradual unpairing of quasiparticles.

Let us now discuss the second band (tree of similar states). All of them are P = �, so clearly they

are not axially symmetric. The root of this tree is 5� state, which obviously cannot be described in

an IBM usual building bocks, 0+ and 2+ phonons: some Cooper pair should be unpaired for that.

Further excitations in this tree also indicates rotations. (Addition of quadrupole phonons cannot

describe it since it would generate many more states which are not there.)

Now we learned an important lesson: superpositions of excitations from both first trees would

generate parity-odd terms in the density matrix, e.g. 3� or pear-like shapes. If so, one may expect

triangular flows in STAR experiment with this nuclide, as indeed was found.

“vibrators” 
vs the “rotators”

so we know 
not only potential energy 

but oscillation frequencies 
as well !



Summary 

• The main suggestion is to consider a state of the nuclei at time zero  
• to be “preheated” 

• and therefore  calculate density matrices in collective variables  
• using thermal methods 

• the simplest (or high-T limit) is just Boltzmann exp[- E(beta,gamma…)/T] 

• the next is semiclassical “flucton” methods, which are quite accurate 


